
Security Audit Report for Meta Pool

Date: Jan 17, 2022

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 DeFi Security . 5

2.1.1 Missing check on the total weight of all the staking pools 5

2.1.2 Conflicts between account roles are not fully considered 5

2.1.3 Missing check on the conflicts while setting account roles 6

2.1.4 Account treasury_account cannot be read or modified 7

2.2 Additional Recommendation . 7

2.2.1 Function assert_callback_calling can be replaced by #[private] 7

2.2.2 Unused macro is found . 7

2.2.3 Dead code is found . 8

2.2.4 Inconsistent implementation between function realize_meta_massive and realize_m-

eta . 8

2.2.5 Function get_staking_pool_list may not work . 9

i

Report Manifest

Item Description
Client Meta Pool
Target Meta Pool

Version History

Version Date Description
1.0 Jan 17, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The audit scope includes the contract under the directory metapool in the Meta Staking Pool reposi-

tory 1. Note the contract under the directory meta-token is not in the audit scope for this report.

The auditing process is iterative. Specifically, we will further audit the commits that fix the founding

issues. If there are new issues, we will continue this process. Thus, there are multiple commit SHA values

referred in this report. The commit SHA values before and after the audit are shown in the following.

Before and during the audit

Contract Name Stage Commit SHA
Meta Pool Initial 1739b8782d88ba2793de3f02ef7fe99a7eacee25

After

Project Commit SHA
Meta Pool 2339908956bdded5828c4a0abd3037ac1395b04e

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1https://github.com/Narwallets/meta-pool/

1

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data Flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

2

1.3.4 Additional Recommendation

Gas optimization

Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue hs been recognized by the client, but not fixed yet.

Fixed The issue has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find 5 potential issues in the smart contract. We also have 5 recommendation, as follows:

High Risk: 0

Medium Risk: 1

Low Risk: 3

Recommendations: 5

The details are provided in the following sections.

ID Severity Description Category Status

1 Middle
Missing check on the total weight of all the

staking pools
DeFi Security Confirmed

2 Low
Conflicts between account roles are not fully

considered
DeFi Security Fixed

3 Low
Missing check on the conflicts while setting ac-

count roles
DeFi Security Fixed

4 Low
Account treasury_account cannot be read or

modified
DeFi Security Fixed

5 -
Function assert_callback_calling can be re-

placed by #[private]
Recommendation Acknowledged

6 - Unused macro is found Recommendation Fixed

7 - Dead code is found Recommendation Fixed

8 -
Inconsistent implementation between function

realize_meta_massive and realize_meta
Recommendation Confirmed

9 -
Function get_staking_pool_list may not

work
Recommendation Confirmed

4

2.1 DeFi Security

2.1.1 Missing check on the total weight of all the staking pools

Status Confirmed.

Description This issue is introduced in or before the initial commit.

14#[derive(Default, BorshDeserialize, BorshSerialize)]
15pub struct StakingPoolInfo {
16 pub account_id: AccountId,
17
18 //how much of the meta-pool must be staked in this pool
19 //0=> do not stake, only unstake
20 //100 => 1% , 250=>2.5%, etc. -- max: 10000=>100%
21 pub weight_basis_points: u16,

Listing 2.1: staking_pools.rs

The weight_basis_points of a staking pool is set or modified by the owner with function set_staking_p-

ool_weight in owner.rs:

71 ///update existing weight_basis_points
72 pub fn set_staking_pool_weight(&mut self, inx: u16, weight_basis_points: u16) {
73 self.assert_operator_or_owner();
74
75 let sp = &mut self.staking_pools[inx as usize];
76 if sp.busy_lock {
77 panic!("sp is busy")
78 }
79 // max is 50% for a single pool
80 assert!(weight_basis_points < 5_000);
81 // TODO: If ‘weight_basis_points‘ is invalid, the owner can break the contract.
82 // Ideally, the owner shouldn’t have any power to break the contract and instead
83 // should only manipulate the pools with verification that it’s a real pool, but it’s
84 // difficult to enforce.
85 // option: store "score" for each validator & compute weight_basis_points as score*10_000/

total_score
86 // by doing that there’s no "invalid" score. Note: In order to do that, we should keep

total_score on contract state
87 sp.weight_basis_points = weight_basis_points;
88 }

Listing 2.2: owner.rs

Impact The total weight_basis_points of staking pools may exceed 100% and starvation may occur in

the lightweight staking pool when we operating on the distribute_staking.

Suggestion I Set an owner function in the contract that can set all stacking Pools’ weights at once and

check at the end that the sum(weight_basis_points)==100%.

2.1.2 Conflicts between account roles are not fully considered

Status Fixed.

5

Description This issue is introduced in or before the initial commit. In the init function, there is no check

on whether treasury_account_id equals to the DEVELOPERS_ACCOUNT_ID .

251 #[init]
252 pub fn new(
253 owner_account_id: AccountId,
254 treasury_account_id: AccountId,
255 operator_account_id: AccountId,
256 meta_token_account_id: AccountId,
257) -> Self {
258 assert!(!env::state_exists(), "The contract is already initialized");
259
260 //all accounts must be different
261 // not all combinations tested, we assume the owner deploying the contract knows that

accounts must be different
262 // it does not make sense to burn fees checking all possible combinations
263 assert!(&owner_account_id != &treasury_account_id);
264 assert!(&owner_account_id != &DEVELOPERS_ACCOUNT_ID);
265 assert!(&operator_account_id != &owner_account_id);
266 assert!(&operator_account_id != &DEVELOPERS_ACCOUNT_ID);
267 assert!(&treasury_account_id != &operator_account_id);

Listing 2.3: lib.rs

Impact If DEVELOPERS_ACCOUNT_ID equals to treasury_account_id, the reward belonging to the treasury

will be claimed by the developer.

Suggestion I We can write a separate function to check whether there are repeated account IDs. In the

function new and the other functions that may change one of the accounts, we should invoke this function

to ensure that there are no repeated account IDs.

2.1.3 Missing check on the conflicts while setting account roles

Status Fixed.

Description This issue is introduced in or before the initial commit. The owner can change the operator_a-

ccount_id and owner_id by invoking such functions below. However, there is no check on whether the new

operator_account_id equals the other IDs (e.g., DEVELOPER_ACCOUNT_ID), resulting in repeated account

IDs.

128 pub fn set_operator_account_id(&mut self, account_id: AccountId) {
129 assert!(env::is_valid_account_id(account_id.as_bytes()));
130 self.assert_owner_calling();
131 self.operator_account_id = account_id;
132 }
133 pub fn set_owner_id(&mut self, owner_id: AccountId) {
134 assert!(env::is_valid_account_id(owner_id.as_bytes()));
135 self.assert_owner_calling();
136 self.owner_account_id = owner_id.into();
137 }

Listing 2.4: owner.rs

6

Impact The repeated account IDs can result in the same impact in issue 2.1.3

Suggestion I See suggestion for issue 2.1.3.

2.1.4 Account treasury_account cannot be read or modified

Status Fixed.

Description This issue is introduced in or before the initial commit. The treasury_account_id can not

be changed after the contract is deployed and initialized.

Impact: N/A

Suggestion I Add the functions for read and modify the treasury_account_id.

2.2 Additional Recommendation

2.2.1 Function assert_callback_calling can be replaced by #[private]

Status Acknowledged.

Description This issue is introduced in or before the initial commit. We can replace function assert_call-

back_calling() in metapool/src/utils.rs by the macro #[private] provided by the near-sdk-rs.

33pub fn assert_callback_calling() {
34 assert_eq!(env::predecessor_account_id(), env::current_account_id());
35}

Listing 2.5: utils.rs

Suggestion I Use macro #[private] instead of assert_callback_calling().

Feedback from the project I would not recommend this, because the word #[private] conflicts with the

pub fn right below. #[private] was a lousy choice from the NEAR team, and I prefer the code be readable. It

should be called #[callback-only] to describe exactly what the macro is doing. The fn is actually public and

exported in the WASM. Using the #[private] macro and requiring it to be a pub fn exported in the WASM

only obscures the control being performed for new programmers and can lead to bugs in the future.

2.2.2 Unused macro is found

Status Fixed.

Description This issue is introduced in or before the initial commit. #[payable] is not required in function

set_reward_fee because it does not require additional attached deposits.

446 // idem previous function but in basis_points
447 #[payable]
448 pub fn set_reward_fee(&mut self, basis_points: u16) {
449 self.assert_owner_calling();
450 assert!(basis_points < 1000); // less than 10%
451 // DEVELOPERS_REWARDS_FEE_BASIS_POINTS is included
452 self.operator_rewards_fee_basis_points =
453 basis_points.saturating_sub(DEVELOPERS_REWARDS_FEE_BASIS_POINTS);
454 }

Listing 2.6: lib.rs

7

Suggestion I Remove macro #[payable] .

2.2.3 Dead code is found

Status Fixed.

Description This issue is introduced in or before the initial commit. Function between is not used.

121#[inline]
122pub fn between(value: u128, from: u128, to: u128) -> bool {
123 value > from && value < to
124}

Listing 2.7: utils.rs

Suggestion I The function is not used and can be removed.

2.2.4 Inconsistent implementation between function realize_meta_massive and realize_meta

Status Confirmed.

Description This issue is introduced in or before the initial commit. Function realize_meta_massive is

used to realize meta for multiple users while realize_meta is used for one user. However, realize_meta_mas-

sive adds an additional check (line 849) on updating the account.

827#[inline]
828 //------------------
829 // REALIZE META
830 //------------------
831 /// massive convert $META from virtual to secure. IF multipliers are changed, virtual meta can

decrease, this fn realizes current meta to not suffer loses
832 /// for all accounts from index to index+limit
833 pub fn realize_meta_massive(&mut self, from_index: u64, limit: u64) {
834 for inx in
835 from_index..std::cmp::min(from_index + limit, self.accounts.keys_as_vector().len())
836 {
837 let account_id = &self.accounts.keys_as_vector().get(inx).unwrap();
838 if account_id == NSLP_INTERNAL_ACCOUNT {
839 continue;
840 }
841 let mut acc = self.internal_get_account(&account_id);
842 let prev_meta = acc.realized_meta;
843
844 acc.stake_realize_meta(self);
845 //get NSLP account
846 let nslp_account = self.internal_get_nslp_account();
847 //realize and mint meta from LP rewards
848 acc.nslp_realize_meta(&nslp_account, self);
849 if prev_meta != acc.realized_meta {
850 self.internal_update_account(&account_id, &acc);
851 }
852 }
853 }
854

8

855 pub fn realize_meta(&mut self, account_id: String) {
856 let mut acc = self.internal_get_account(&account_id);
857
858 //realize and mint $META from staking rewards
859 acc.stake_realize_meta(self);
860
861 //get NSLP account
862 let nslp_account = self.internal_get_nslp_account();
863 //realize and mint meta from LP rewards
864 acc.nslp_realize_meta(&nslp_account, self);
865
866 self.internal_update_account(&account_id, &acc);
867 }

Listing 2.8: lib.rs

Suggestion I Unify the implementation of these two functions.

2.2.5 Function get_staking_pool_list may not work

Status Confirmed.

Description This issue is introduced in or before the initial commit. The gas may not be enough for a

transaction invoking function get_staking_pool_list due to huge number of stacking pools.

37 //---------------------------------
38 // staking-pools-list (SPL) management
39 //---------------------------------
40
41 /// get the current list of pools
42 pub fn get_staking_pool_list(&self) -> Vec<StakingPoolJSONInfo> {
43 let mut result = Vec::with_capacity(self.staking_pools.len());
44 for inx in 0..self.staking_pools.len() {
45 let elem = &self.staking_pools[inx];
46 result.push(StakingPoolJSONInfo {
47 inx: inx as u16,
48 account_id: elem.account_id.clone(),
49 weight_basis_points: elem.weight_basis_points,
50 staked: elem.staked.into(),
51 unstaked: elem.unstaked.into(),
52 last_asked_rewards_epoch_height: elem.last_asked_rewards_epoch_height.into(),
53 unstaked_requested_epoch_height: elem.unstk_req_epoch_height.into(),
54 busy_lock: elem.busy_lock,
55 })
56 }
57 return result;
58 }

Listing 2.9: owner.rs

Suggestion I Add from_index and end_index as parameters in this function.

9

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Missing check on the total weight of all the staking pools
	2.1.2 Conflicts between account roles are not fully considered
	2.1.3 Missing check on the conflicts while setting account roles
	2.1.4 Account structurecolortreasury_account cannot be read or modified

	2.2 Additional Recommendation
	2.2.1 Function structurecolorassert_callback_calling can be replaced by structurecolor#[private]
	2.2.2 Unused macro is found
	2.2.3 Dead code is found
	2.2.4 Inconsistent implementation between function structurecolorrealize_meta_massive and structurecolorrealize_meta
	2.2.5 Function structurecolorget_staking_pool_list may not work

